High-Performance SmallSat Components and the HyperBus Modular Payload Platform

Dr. Rob Hoyt, CEO
*Dr. Dan Reuster, VP Strategy
Greg Jimmerson, Chief Concept Dev.

425.486.0100x111 hoyt@tethers.com

TUI's Five Divisions

Tethers Unlimited, Inc.

Market 1

High-Performance, **SmallSat Components**

Establish space hardware expertise, processes, revenue, and credibility

Market 2

Satellite Services / **Hosted Payloads**

TUI Next-Gen Spacecraft – HyperBus (an Ethernet Port in Space)

Development Stage Preparing Initial Flight Demos Market 3

Robotic Servicing: LEO Knight

Fueling / Servicing, Orbital Assembly, Building / Tending Space Infrastructure

Growth Stage LRIP => Full Production **Mission Concept Stage** Laboratory Demos

TUI Next-Gen Spacecraft – HyperBus

HyperBus OV-1 (an Ethernet Port in Space)

Hosted

Payloads

(1-10U)

Orbit

Agility[™]

HyperBus 12U Platform & Support Modules

Advantages for Payload Customer:

- No Spacecraft Development
- Eliminate Payload I&T Costs
- Minimize Time-to-Launch
- Ops and Data via the Cloud
- Regular Launch Cadence

High Bandwidth
Data Up/Down

NanoRacks
12U Doublewide Deployer

ISS Deployment

HyperBus Payload Operations Experience

HyperBus Timeline vs. Traditional Approach

Steady Launch Cadence, Modular Bus, & Simple, Remote I&T Enable 6-Month Technology Test Cycle

Parallel development path and remote Integration & Test significantly reduce time-to-flight

HyperBus MPP Modular Assembly

IKEA-like Assembly

5-minute Payload Integration: "Just 4 bolts and a plug"

Readily-Configurable Mission Modules and Payload Accommodations

HyperBus 12U Hosted Payload Service

10-Minute Payload Integration | **Orbit Agility & Persistence** | **Big Data Delivery**

HyperBus integrates TUI's high-TRL, high-performance components to enable mobility, security, and big data capabilities.

SWIFT®-SLX

Flexible High-Performance L- and S-Band Communications

	Qty	Freq. Range	Bandwidth	Power	
Tx	2	1.5-2.5 GHz	≈40 max. MHz Inst.	33 dBm /ea	
Rx 4	Л	1.0-4.0 GHz	≈100 MHz Tuning	0.75 dB NF	
	4		≈7 MHz Inst.	0.75 UB NF	

Typical Use	Band	Frequency Range	
Uplink	L-band Uplink	1755 to 1850 MHz	
Uplink / Downlink	Mobile Satellite	1930 to 2025 MHz	
Uplink	USB S-band	2025 to 2110 MHz	
Downlink	USB S-band	2200 to 2300 MHz	
Uplink / Downlink	ISM S-band	2400 to 2483 MHz	

Capabilities

- ≈2W max. S-band Tx w/ ≈40 MHz max. bandwidth
- 1.7-2.7 GHz Tx frequency coverage
- Independent receivers w/ ≈7 MHz typ. bandwidth
- 1.5-3.5 GHz Rx frequency coverage in ≈100 MHz chunks
- ≈0.75 dB typ. receiver noise figure
- Arbitrary waveform/modulation/coding
- Typical LEO max.: 5 Mbps up/20 Mbps down
- 100% re-programmable w/ fail-safe boot modes
- Optional diplexer for full-duplex L-/S-band ops

Network Compatibility

Optional AFSCN-specific firmware interoperable with all non-deprecated modes in ICD-0502E. In addition to AM/FSK, direct carrier PSK uplinks are supported giving the SWIFT-SLX the ability to interoperate with both traditional and newer commercial ground stations.

- NASA's NEN, TDRS (SN), DSN
- Verified w/ RT Logic T400XR, Cortex T70, and Amergint satTRAC
- Simultaneous SGLS and USB uplink reception
- Interface compatible with KI-55 and GNOME Type-1 encryption module
- Onboard commercial-grade AES-256/GCM "full-rate" encryption available, including compatibility with GRYPHON personalities of KIV-7MS

Specifications

- > 3 year LEO mission design life
- 86 x 86 x 25-35mm (0.25U) (excl. diplexer)
- ≈300 grams (excluding diplexer)
- 6-36V unregulated DC
- Pre-qualified to NASA GEVS shock/vibe
- Pre-qualified to -40 to +60°C
- Scalable power consumption
 - 3.0W active standby
 - 6.5W single receive
 - o 12W transmit only
 - o 15W transmit and single receive

TETHERS UNLIMITED

High-Performance Water

Base Propulsion for Small Satellites

- Non-Explosive
- Non-Toxic
- High Thrust Efficiency
- High Specific Impulse
- Flight Qualified
- Onboard Crypto Available

- SBIR
- Tipping Point
- Ph-III Sales

HYDROS-C	Specifications	HYDROS-M	
> 310 s	Specific Impulse	> 310 s	
> 1.2 N	Thrust	> 1.2 N	
2.2 mN	Max Effective Continuous Thrust	6.8 mN	
0.13 mN/W	Thrust Efficiency	0.16 mN/W	
> 1.75 Ns	Impulse per Thrust Event	>1.75 Ns	
1,230	Total # Thrust Events	10,300	
> 2,151	Total Impulse Delivered	> 18,000	
0.74 kg	Water Capacity	6.2 kg	
1.87 kg	Dry Mass	6.4 kg	
2.61 kg	Wet Mass	12.6 kg	
825 s	Time to Refill Gas Plenums	269 s	
190 x 190 x 92 mm	Size	Ø 381 x 191 mm	
5-25 W	Power	7-40 W	
3 years LEO	Lifetime	3 years LEO	
Deck or Rail Mount Options	Mounting	Within 15" separation ring	
RS-422, Ethernet	Command Interface	RS-422, Ethernet	
TRL 6+	Qualification Level	TRL 6+	

Next-Gen HYDROS-R will be On-Orbit Re-fuelable

SWIFT®-XTS

High-Performance X-Band Transmitter and S-Band Transceiver

Capabilities

- >100 Mbps real X-band downlink rates
- >10 Mbps real S-band downlink rates
- >1 Mbps real S-Band uplink rates on up to two independent simultaneous channels
- >6 dB continuously adjustable X-band Tx power w/o losing efficiency
- MIMO antenna connectivity for attitude diversity and ADCS error recovery
- Integrated framing w/ deep store-and-forward buffers, automatic frame sizing and padding
- Full-rate AES-256/GCM crypto offload w/ multiple key indexing, including KIV-7MS GRYPHON compatibility
- Runtime configurable link parameters
 - BPSK/[O]QPSK/8PSK (8PSK Tx Only)
 - LDPC/Reed-Solomon/Convolutional
 - o Continuously adjustable symbol rates
- Flexible high-speed digital interface options, including separate command and data ports:
 - RS-422/LVDS: Multiple pairs async. or sync. up to 50 Mbps each
 - o SpaceWire: Dual up 100 Mbps each
 - Ethernet: 10/100/1000 Mbit w/ integrated
 PHY and magnetics

Specifications

Metric	X-band Tx ¹	S-Band Rx (2)	
Power/Sensitivity	1-7W RF Output	0.75 dB NF typ.	
Gain Control Range	-30 to +6 dB	>90 dB AGC	
Dynamic Range	>60 dBc SFDR	>66 dBc SFDR	
Bandwidth	>70 MHz	7 MHz/ea typ.	
Frequency	7000-8500 MHz	1500-3500 MHz	
Base Input Power	3.0W	3.0W	
Additional PA	+24-42W	1x Rx: +3.5W	
Power	T24-42VV	2x Rx: +5.0W	
Size & Mass	86 x 86 x 50mm , 500g		
Shock/Vibe	Pre-qualified to NASA GEVS levels		
Temperature	Pre-qualified to -40 to +60°C		

¹See SLX data sheet for S-Band Transmitter specs

www.tethers.com

High-Performance 3DOF Pointing & Positioning for Small Satellites

Why Fly COBRA?

- **Æ** Low SWaP-C
- High Precision
- High Payload Capacity
- Hemispherical Workspace
- **Continuous Pointing**
- Flight Qualified

CO	B	R	A	ΓN
COMI	MA	N	DE	R

COBRA-UHPX	Specifications	COBRA-HPX
22 mm BLDC Motor	Actuator	12 mm Stepper Motor
100:1 Harmonic Drive	Gearhead	377:1 Zero Backlash Spur
12-bit Magnetic Encoder	Sensor	12-bit Absolute Mag. Encoder
(491 g w/ launch locks)	Mass	184 g (276 g w/ launch locks)
165 mm diameter	Stowed Footprint	113 mm diameter
40 mm (excl. launch locks)	Stowed Height	29.2 mm (excl. launch locks)
85.5 mm (excl. launch locks)	Deployed Height	73.5 mm (excl. launch locks)
Full Hemisphere	Pointing Workspace	Full Hemisphere
≤ ± 237 arc-sec (0.066°)	Closed-Loop Repeatability	≤ ± 234 arc-sec (0.065°)
≤ 3 arc-sec (0.00083°)	Closed-Loop Resolution	≤ 276 arc-sec (0.077°)
Up to 180°/s	Slew Rates	Up to 30°/s
Load dependent	Power Consumption	2.4 W
None	Thru Hole Diameter	10.5 mm
500 g in 1G	Payload Capacity	1200 g in zero-G
-40° C to +85° C	Non-Operating Temperature	-40° C to +85° C
-35° C to +70° C	Operating Temperature	-35° C to +70° C
1X, FD04 Frangibolt (Qual Pending)	Launch Lock Option	3X, FC2 Frangibolts (Qualified)

SWIFT®-KTX & High Gain Pointing Antenna

High-Performance Software-Defined K/Ka-Band Transmitter

Capabilities

SWIFT-KTX provides small satellites with a high-throughput downlink in K-band. When paired with the next generation SWIFT baseband processor and sufficient link margin, real data rates of 500 Mbps or more are achievable using high order modulation (>3 bits/Hz) and Turbo/LDPC encoding. Each radio includes two 2W PAs that directly drive two switchable WR-42 waveguide interfaces for left/right antenna polarization agility. A third ≈10 dBm waveguide output is available before the PAs for driving TWTAs and integrated K-band ESAs.

- >500 MHz real modulation bandwidth
- Two discrete designs covering approximately:
 - o 18-23 GHz
 - o 23-28 GHz
- ≈33 dBm saturated output power w/ ≈20 dB adjustable range
- Three switchable WR-42 waveguide outputs (two w/ HPAs)

Specifications

- >3 year LEO mission design life
- Size: 86 x 86 x 40mm
- Mass: < 500 grams
- Power: 6-36V unregulated DC
 - o Integrated latch-up/fault detection & protection
- Power consumption:
 - o Current gen 50 MHz baseband processor: ≈3W
 - Next gen 500 MHz baseband processor: ≈15W
 - o K/Ka-band module power consumption for 33 dBm output: ≈16W
- High-speed interface options:
 - o 1Gbit Ethernet
 - o 200 Mbps SpaceWire (LVDS)
 - o 200 Mbps sync. HDLC over LVDS
 - 10+Gbps SERDES (next generation baseband processor only)
- Flexible mounting options

Network Compatibility

- Verified w/ MMR/QMR and ViaSat VHR modems
- TDRS compatibility verification pending

Example Scientific Payload TUI's HyperBus for TeD^3

(HyperCAST)

HyperCAST (TeD^3) Technology Demonstrator

Tether Dynamics Deployer & Demonstrator (TeD^3)

- Demonstrate tether deployment method to be used on Lunar T-REx
- Obtain system dynamics data to validate tether simulation models
- Demonstrate ability to control two tethered spacecraft

HyperCAST (TeD^3) Mission Concept

- Two 6U spacecraft connected by a tether in LEO
- One spacecraft contains a tether deployment system that is representative of a system to be used or Lunar T-Rex
- The two spacecraft enter LEO on an ISS/rideshare opportunity and are in a joined configuration via a release mechanism
- The spacecraft separate and the tether deployment operation is demonstrated
- Both spacecraft have instrumentation that provide data on the dynamics of the deployment operation
- Spacecraft demonstrate stability in the tethered configuration

HyperCAST (TeD^3) Driving Requirements

- Mission cost of < \$20M
- Deploy tether using a combination of initial end-off spool free deployment followed by a slow, controlled deployment via pinch rollers
- LEO lifetime < 25 years
- Conform to ISS deployment requirements
- Satellites to be a 6U form factor
- Capture visual confirmation of the tether deployment
- Obtain metrology data to characterize system dynamics
- Class 3 EEE parts to be used for tether system *
- Minimum mission life of 3 months

HyperCAST (TeD^3) ConOps

- HyperBus carrying the CAST payload (HyperCAST)
 deploys from the ISS via the NanoRack double wide
 deployer.
- 2. HyperCAST drifts to a safe distance from the ISS
- 3. TUI performs health and checkout activities and reports spacecraft status to NASA
- 4. NASA reviews the spacecraft check out certifies that HyperCAST propulsion is safe to operate
- 5. NASA provides the activation code for HYDROS
 - a. Limited delta V to ensure no re-contact w/ ISS
 - b. Limited action time
 - c. Limited power consumption
 - d. Watch dog counter
- 6. HyperCAST navigates down to tether deployment orbit (estimated 300km)
- NASA provides the activation code for tether deployment
 - a. Deployment limited to time window and orbital bounding box

- 3. One-shot spring deployment of 5km of tether
 - a. First 1km is free running (impulse)
 - b. Remaining 4km is pinch roller controlled
 - c. 1-day deployment (22+ hours)
- 9. Download deployment data
 - a. Using RBC or other commercial ground station
- 10. Analyze deployment data
- 11. Monitor tether dynamics
 - a. 30 days
 - b. Test Tether-Compatible ADCS Methods
- 12. Final HYDROS fire
 - a. Final tether dynamic study
- 13. Final data download
- 14. Deorbit in less than 2 years
- 15. Total mission life 45-days

HyperCAST (TeD^3) MEL and SWaP

Sub System	Component	Mass (kg)	Power Draw (W)	Power Supplied (W)	Notes/Assumptions
Main Body	TUI HyperBus EPS System	3.4	0	54	108 cells, assume no LiPo batteries in baseplate
	TUI HYDROS-C	3	15	0	Mass incl. brackets, water. Power 5-25 W
	TUI SLX w/ Diplexer	0.6	10	0	single transmit and receive. 15W peak power
	Blue Canyon XACT-50	1.23		0	12V, but what is average power?
	Pumpkin Battery BM2	0.7	1	160	data sheet power < 1W
	Space Micro CSP	0.08	2.8	0	2.8 is max power draw
	Micro Aerospace IMU03	0.15	1.3	0	
	NewSpace GPS Receiver	0.11	1	0	excluding active antenna
	Module housings (x2)	2	0	0	Currently 1.4 kg each, could be optimized to under 1kg
	TOTAL	11.27	31.1	54	
	TUI Pinch Rollers	0.09	4.8	0	
	TUI Tether and Canister	2	0	0	
	TUI SLX w/ Diplexer	0.6	10	0	single transmit and receive. 15W peak power
	Blue Canyon XACT	0.91		0	Small version of XACT-50
	Pumpkin Battery BM2	0.7	1	160	data sheet power < 1W
End Body	Space Micro CSP	0.08	2.85	0	
	Micro Aerospace IMU03	0.15	1.3	0	
	NewSpace GPS Receiver	0.11	1	0	
	Body Mount Solar Panels	0.3	0	12	24 cells (16 on top face, 4 on each side)
	Endbody housing	2	0	0	Currently 2.3, but could optimize to under 2kg
	Camera	0.2	0.2		
	TOTAL	7.14	21.15	12	
TOTAL SATELLI	TOTAL SATELLITE MASS and POWER 18.41				NanoRacks Double Wide Deployer max payload = 18kg

Mass Budget to be refined

Additional HyperBus Payloads / Missions

TUI Stick-Maker

- TUI Sat-3 Subsystems
- TUI Trusselator Demo
- 3U Payload Volume

TUI Robotic Refueling

- o TUI Sat-3 Sub-Systems
- KRAKEN-X Robotic Arm + Dactylus End-Effector
- HYDROS Refueling Port Demo

Mission being transferred to Restore-L program under NASA's Tipping Point Program

Science Payloads Wanted!

Payload in Customer Lab

HyperBus FlatSat at TUI

Tethers Unlimited, Inc.

Market 4

SmallSat Servicing

Market 5

Market 6

Fuel Depots / Re-fueling Services

On Orbit Assembly / Robotic Tending

Soft Capture, Hard Capture, Interfaces & Grounding

Water Base Space Economy

Persistent GEO and LEO Platforms

Research and Development Stage Initial Laboratory Demonstrations