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The Heliopshysics Environment

lons and neutrals both coexists in equivalent densities at the low ionospheres and the LISM G
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The solar wind flows radially outward from the
sun in the interplanetary space, and slows down
and heats up on encountering Earth / Planetary
magnetospheres driving several current
systems, waves and acceleration phenomena

Some of the solar wind kinetic energy is
deposited in ionospheres, causing currents,
heating and bulk flows of ions and neutrals

The relatively high densities at LEO allow for
small apertures, therefore small instruments and
constellation of SmallSat / CubeSats
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Model ion / neural density profiles and day/night electron density profiles in
the earth’s ionosphere
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The GSFC mini — lon Neutral Mass Spectrometer (INMS) - Gated Time of Flight Technology
Missions NSF Exocube 1 (launched in 2015), NASA DELLINGR (launched Nov 2017), Exocube 2 to be
launched in Aug 2019, PetitSat to be launched in 2020 and future missions
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INMS Principle of Operation

Gated time of flight technology for simultaneous species measurements without
scanning

Separate ion and neutral apertures and sensors sharing common electronics

In ion aperture ions are accelerated and focused towards an electric gate and into a
field free area towards an ESA and the CEM detector

In neutral aperture charged particles are blocked with entrance grids and neutrals are
ionized with thermionic electron impact ionization

The ESA blocks attenuates light and out of band
The acceleration voltage orders particles in square root with their time of flight

Separate TOF binning gives a 2 x 400 bin ion and neutral spectra sampled at 1Hz



Compact Electronics: optics, 3KV HVPS, gate driver, electron gun, FEE, FPGA

TOF binning and CDH; stack size 8cm x 8cm x 8cm
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Laboratory neutral spectra

Ambient gas mass spectra
Mass resolution M/dM ~12-16
Mass dynamic range 1-40 amu
Max counting rate: 1Meg-cps
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Mini-INMS Measurements Hto Argon
TOF vs SOQRT Plot
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Two Flight INMS instruments for the GSFC Dillinger 6U (left) and the NSF Exocube 2 (right)




Very poor communications antenna did not

First flight spectra of the INMS instrument on EXOBUBE GSFC/Heliophysics
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NASA GSFC Tech Demo DELLINGR 6U
Deployed in LEO Orbit ~450 km from the ISS on November 2017

R‘\"hr\ INMS FOV

Openings

|

The Dellingr team: L. Kepko, M. Johnson, C. Clagget, L. Santos, B. Azimi, N.
Paschalidis, S. Jones, E. Zesta, T. Bonalsky, J. Lucas, A. Cudmore, D. Chai,
J. Marshall, D. Simpson, K. Bromund et al.

Due to attitude control failure the SC is tumbling with a period in the range
10-20 min



Typical flight lon spectra of Dellingr INMS averaged in all look directions.
Higher HV programming improves the massrsolution
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Dellingr INMS lons Spectra Fit March8, year 2019
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Dellingr full orbit data, LEO ISS type ~450 km

INMS lons Dellingr May 25, 22:00 to May 26 1:00 2018
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Dellingr full orbit data, LEO ISS type ~450 km

INMS lons Dellingr May 25, 22:00 to May 26 1:00 2018
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The measurements are consistent with the modeled flux profile
of spinning spacecraft

Modeled spacecraft frame flux profiles of O, He, and H as a function of apperture vs RAM angle
Temperature 1000K, FOV +/- 5 deg
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Tech Demo Conclusion

 The INMs was demonstrated in flight with the Exocube 1 and Dellingr missions

* Exocube 1 antenna did not deploy — very poor communications — spacecraft tumbling
* Non optimized instrument settings
* Got sample ion specta
e Activated neutrals and got sample neutral spectra

e Dellingr SC attitude control failed - spacecraft tumbling
* Initial high spin spacecraft spin led to premature neutral activation in February
2018 and subsequent ionizer failure
e Spacecarft spin recover to slow spin in May 2018

* Sapcecraft and INMS work well until present
* INMs optimization for ion measurements on both apertures
e Science data is collected while still instrument is tech demoed in various modes.

* Good ion data consistent with modeling

* Lessons learned - Improved versions of he INMS on Exocube 2 and PetitSat



